

Acids and Bases

The pH Scale

DR.S. ANAND GIRI

ANALYTICAL CHEMISTRY

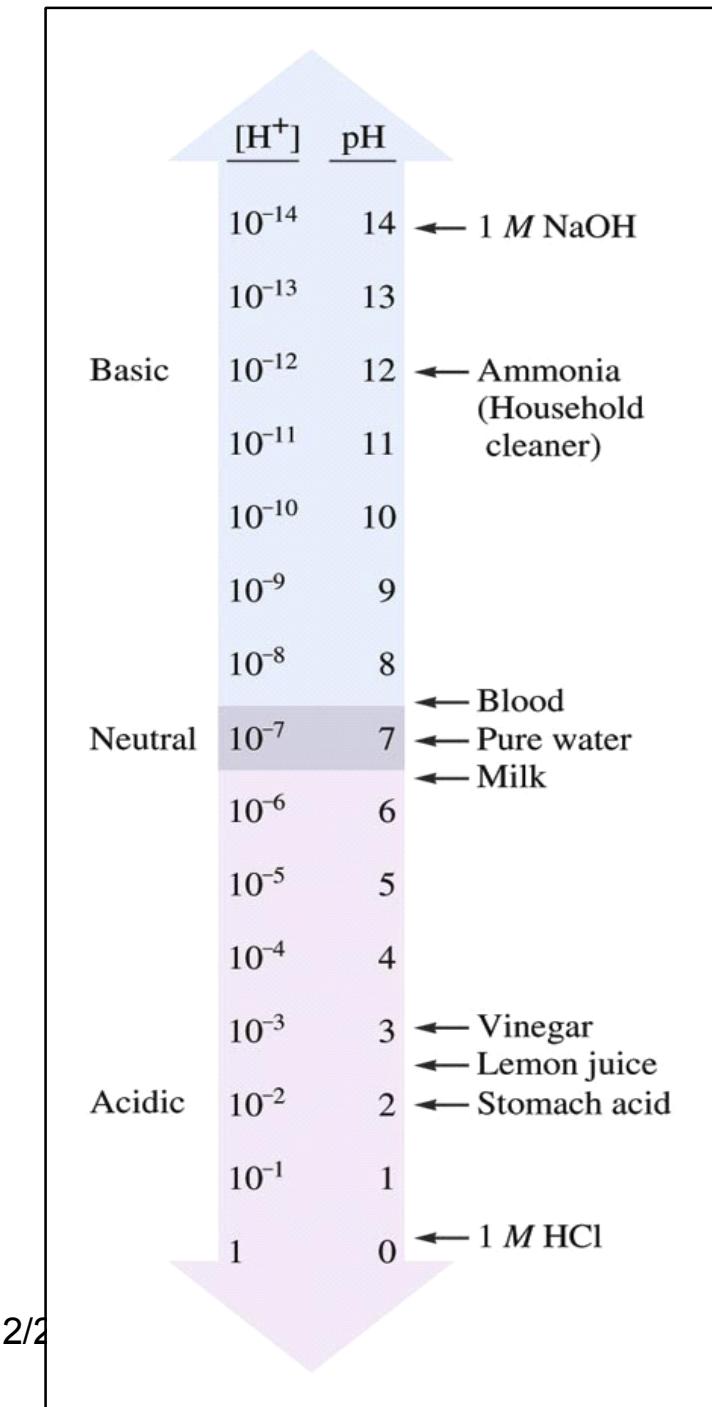
Ph.D. Jadavpur University

Kolkata, India

2/2/2015

2

pH – A Measure of Acidity


$$\boxed{\text{pH} = -\log [\text{H}^+]}$$

Solution Is

At 25°C

neutral	$[\text{H}^+] = [\text{OH}^-]$	$[\text{H}^+] = 1 \times 10^{-7}$	$\text{pH} = 7$
acidic	$[\text{H}^+] > [\text{OH}^-]$	$[\text{H}^+] > 1 \times 10^{-7}$	$\text{pH} < 7$
basic	$[\text{H}^+] < [\text{OH}^-]$	$[\text{H}^+] < 1 \times 10^{-7}$	$\text{pH} > 7$

$$pOH = -\log [OH^-]$$

$$[H^+][OH^-] = K_w = 1.0 \times 10^{-14}$$

$$-\log [H^+] - \log [OH^-] = 14.00$$

$$pH + pOH = 14.00$$

The pH Scale

- The number of **decimal places** in the *log* is equal to the **number of significant figures** in the *original number*

$$[\text{H}^+] = 1.0 \times 10^{-9} \text{ (2 significant figures)}$$

$$\text{pH} = 9.00 \text{ (2 decimal places)}$$

- The pH changes by **1** for every **power of 10** change in $[\text{H}^+]$
- The pH **decrease** as $[\text{H}^+]$ **increase**

1

The pH of rainwater collected in a certain region of the northeastern United States on a particular day was 4.82. What is the H^+ ion concentration of the rainwater?

$$\text{pH} = -\log [\text{H}^+]$$

$$[\text{H}^+] = 10^{-\text{pH}} = 10^{-4.82} = 1.5 \times 10^{-5} \text{ M}$$

2

The OH^- ion concentration of a blood sample is $2.5 \times 10^{-7} \text{ M}$. What is the pH of the blood?

$$\text{pH} + \text{pOH} = 14.00$$

$$\text{pOH} = -\log [\text{OH}^-] = -\log (2.5 \times 10^{-7}) = 6.60$$

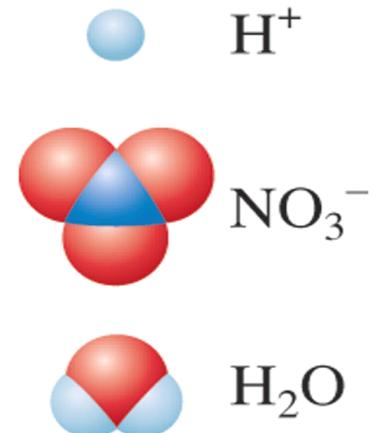
$$\text{pH} = 14.00 - \text{pOH} = 14.00 - 6.60 = 7.40$$

Calculating the pH of Strong Acid Solutions

To deal with acid-base equilibria focus on the solution components and their chemistry

Example

0.1 M HCl solution


Determine which components are significant and which can be ignored.
Focus on the major species

3

What is the pH of a $2 \times 10^{-3} M$ HNO_3 solution?

HNO_3 is a strong acid – 100% dissociation.

The major species are H^+ , NO_3^- and H_2O

Start	$0.002 M$	$0.0 M$	$0.0 M$
-------	-----------	---------	---------

End	$0.0 M$	$0.002 M$	$0.002 M$
-----	---------	-----------	-----------

$$\text{pH} = -\log [\text{H}^+] = -\log [\text{H}_3\text{O}^+] = -\log(0.002) = 2.7$$

4

What is the pH of a $1.0 \times 10^{-10} M$ HCl solution?

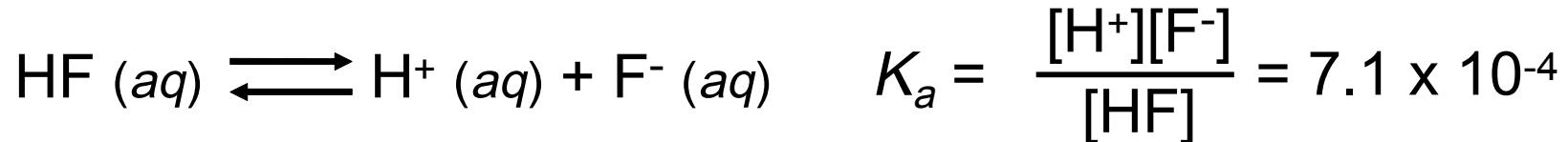
HCl is a strong acid - 100% dissociation but the amount of HCl in this solution is so small. So it has **no effect**.

The only **major species** is H_2O
 H^+ from H_2O

pH = 7.00

Calculating the pH of Weak Acid Solutions

Solving **weak acid** ionization problems:


1. Identify the **major species** that can affect the pH.
 - In most cases, you can ignore the autoionization of water.
 - Ignore $[\text{OH}^-]$ because it is determined by $[\text{H}^+]$.
2. Use **ICE** to express the equilibrium concentrations in terms of single unknown x .

I Initial concentration, C Change, E Equilibrium concentration

3. Write K_a in terms of equilibrium concentrations. Solve for x by the approximation method $[\text{HA}]_0 - x \approx [\text{HA}]_0$.
4. Use 5% rule to verify whether the approximation is valid
5. Calculate concentrations of all species and/or pH of the solution.

5

What is the pH of a 0.5 M HF solution (at 25°C)?

Initial (M)	0.50	0.00	0.00
-------------	------	------	------

Change (M)	$-x$	$+x$	$+x$
------------	------	------	------

Equilibrium (M)	$0.50 - x$	x	x
-----------------	------------	-----	-----

$$K_a = \frac{x^2}{0.50 - x} = 7.1 \times 10^{-4} \quad K_a \ll 1 \quad 0.50 - x \approx 0.50$$

$$K_a \approx \frac{x^2}{0.50} = 7.1 \times 10^{-4} \quad x^2 = 3.55 \times 10^{-4} \quad x = 0.019 \text{ M}$$

When can I use the approximation?

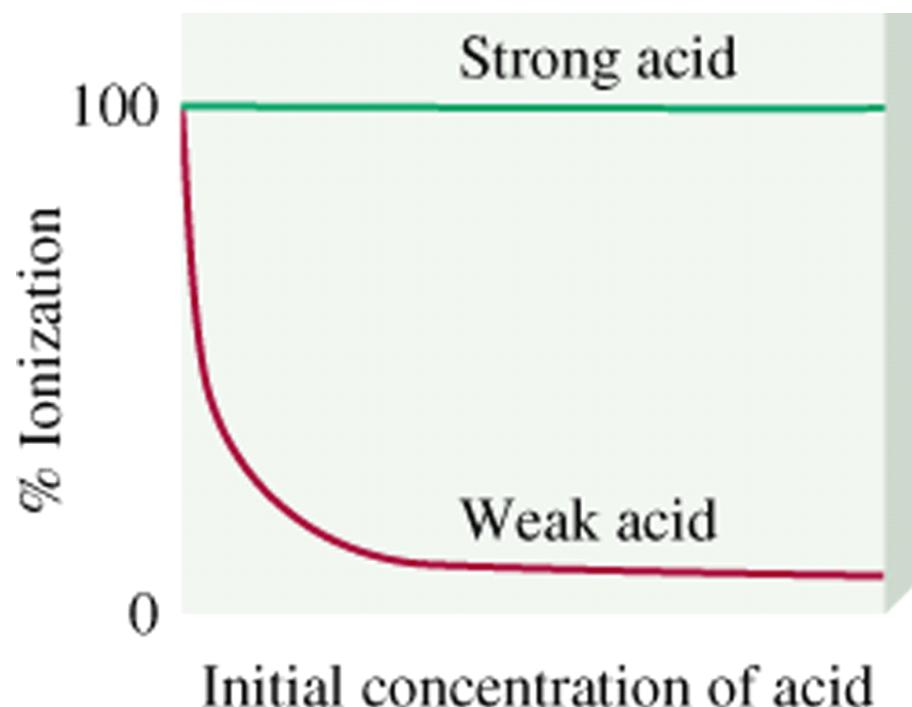
$$K_a \ll 1 \quad 0.50 - x \approx 0.50$$

When x is less than 5% of the value from which it is subtracted.

$$x = 0.019 \quad \frac{0.019 \text{ M}}{0.50 \text{ M}} \times 100\% = 3.8\%$$

Less than 5%
Approximation ok.

$$[\text{H}^+] = [\text{F}^-] = 0.019 \text{ M}$$


$$\text{pH} = -\log [\text{H}^+] = 1.72$$

$$[\text{HF}] = 0.50 - x = 0.48 \text{ M}$$

$$\text{percent dissociation} = \frac{\text{Amount dissociated at equilibrium (mol/L)}}{\text{Initial concentration of acid (mol/L)}} \times 100\%$$

For a monoprotic acid HA

$$\text{Percent dissociation} = \frac{[\text{H}^+]}{[\text{HA}]_0} \times 100\% \quad [\text{HA}]_0 = \text{initial concentration}$$

The pH of Weak Acid Mixtures

Calculate the pH of a solution that contains 1.00 M HCN ($K_a = 6.2 \times 10^{-10}$) and 5.00 M HNO₂ ($K_a = 4.00 \times 10^{-4}$). Also calculate the concentration of cyanide ion (CN⁻) in this solution at equilibrium.

6

What is the pH of a 0.122 M monoprotic acid whose K_a is 5.7×10^{-4} ?

Initial (M)	0.122	0.00	0.00
-----------------	-------	------	------

Change (M)	$-x$	$+x$	$+x$
----------------	------	------	------

Equilibrium (M)	$0.122 - x$	x	x
---------------------	-------------	-----	-----

$$K_a = \frac{x^2}{0.122 - x} = 5.7 \times 10^{-4} \quad K_a \ll 1 \quad 0.122 - x \approx 0.122$$

$$K_a \approx \frac{x^2}{0.122} = 5.7 \times 10^{-4} \quad x^2 = 6.95 \times 10^{-5} \quad x = 0.0083\text{ M}$$

$$\frac{0.0083\text{ M}}{0.122\text{ M}} \times 100\% = 6.8\%$$

More than 5%
Approximation **not** ok.

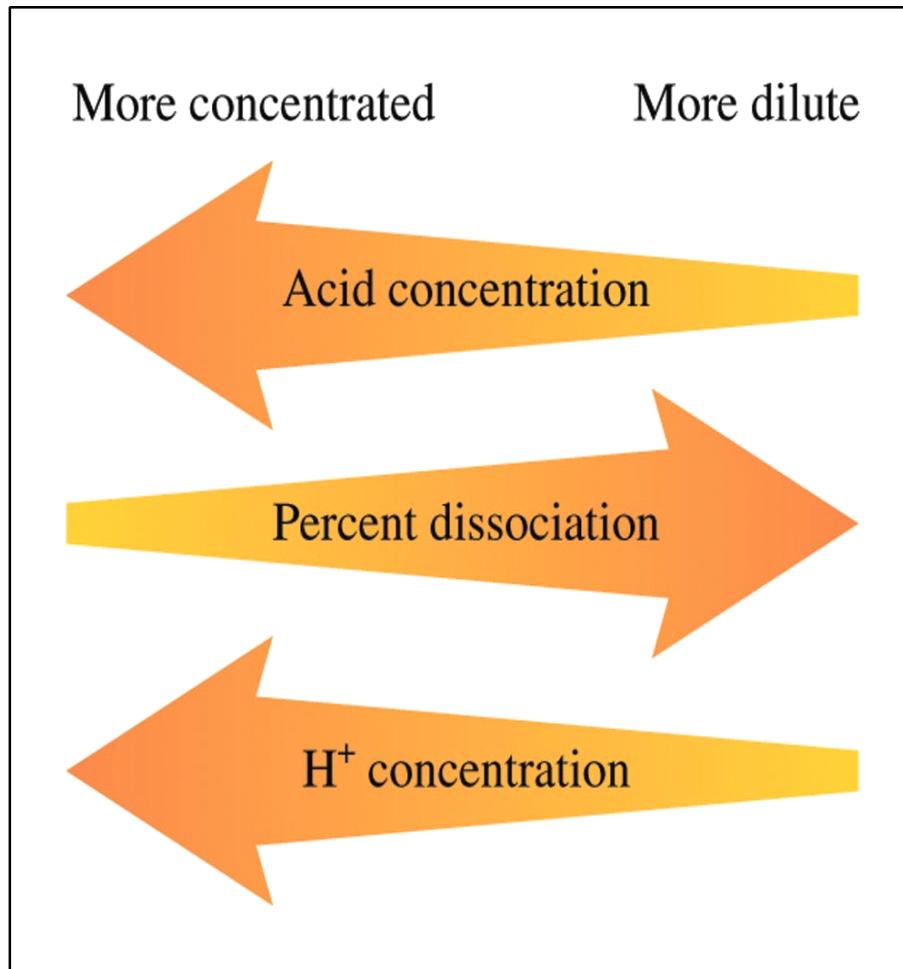
$$K_a = \frac{x^2}{0.122 - x} = 5.7 \times 10^{-4} \quad x^2 + 0.00057x - 6.95 \times 10^{-5} = 0$$

$$ax^2 + bx + c = 0$$

$$x = 0.0081$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$\cancel{x = -0.0081}$$


Initial (M)	0.122	0.00	0.00
-------------	-------	------	------

Change (M)	-x	+x	+x
------------	----	----	----

Equilibrium (M)	0.122 - x	x	x
-----------------	-----------	---	---

$$[\text{H}^+] = x = 0.0081 \text{ M}$$

$$\text{pH} = -\log[\text{H}^+] = 2.09$$

For solutions of any weak acid HA

- $[H^+]$ **decreases** as $[HA]$ **decreases**
- However the percent dissociation **increases** as $[HA]$ **decreases**

Figure 14.10 The Effect of Dilution on the Percent Dissociation and $[H^+]$ of a Weak Acid Solution

2/2/2015

Calculating K_a from percent Dissociation

Example

In a 0.100 M aqueous solution, lactic acid is 3.7% dissociated. Calculate the value of K_a for this acid.

Bases

- According to Arrhenius concept, base is a substance that **produce OH⁻**
- According to the Bronsted- Lowry model, a base is **a proton acceptor**
- Strong bases dissociate completely and are strong electrolytes
- All the hydroxides of the **Group 1A** elements are **strong bases** e.g. NaOH, KOH, CsOH and RbOH
- The alkaline earth **(Group 2A)** hydroxides are also **strong bases**. $\text{Ca}(\text{OH})_2$ and $\text{Ba}(\text{OH})_2$

7

What is the pH of a $1.8 \times 10^{-2} M$ $\text{Ba}(\text{OH})_2$ solution?

$\text{Ba}(\text{OH})_2$ is a strong base – 100% dissociation.

Start	$0.018 M$	$0.0 M$	$0.0 M$
$\text{Ba}(\text{OH})_2 (s) \longrightarrow \text{Ba}^{2+} (aq) + 2\text{OH}^- (aq)$			
End	$0.0 M$	$0.018 M$	$0.036 M$

$$\text{pH} = 14.00 - \text{pOH} = 14.00 + \log(0.036) = 12.56$$

Weak Bases and Base Ionization Constants

$$K_b = \frac{[\text{NH}_4^+][\text{OH}^-]}{[\text{NH}_3]}$$

K_b is the **base ionization constant**

$$K_b \uparrow \quad \text{weak base strength} \uparrow$$

Solve weak base problems like weak acids
except solve for $[\text{OH}^-]$ instead of $[\text{H}^+]$.

Table 14.3 Values of K_b for Some Common Weak Bases

TABLE 14.3 Values of K_b for Some Common Weak Bases

Name	Formula	Conjugate Acid	K_b
Ammonia	NH_3	NH_4^+	1.8×10^{-5}
Methylamine	CH_3NH_2	CH_3NH_3^+	4.38×10^{-4}
Ethylamine	$\text{C}_2\text{H}_5\text{NH}_2$	$\text{C}_2\text{H}_5\text{NH}_3^+$	5.6×10^{-4}
Aniline	$\text{C}_6\text{H}_5\text{NH}_2$	$\text{C}_6\text{H}_5\text{NH}_3^+$	3.8×10^{-10}
Pyridine	$\text{C}_5\text{H}_5\text{N}$	$\text{C}_5\text{H}_5\text{NH}^+$	1.7×10^{-9}

Polyprotic Acids

- H_3PO_4
- H_2SO_4
- H_2CO_3
- $\text{H}_2\text{C}_2\text{O}_4$

Polyprotic Acids

- Some acids can furnish **more** than one proton e.g. H_2SO_4 and H_3PO_4 and are called **polyprotic acids**
- A polyprotic acid always **dissociate** in a ***stepwise*** manner
- H_2SO_4 is a **diprotic** acid
- H_3PO_4 is a **trifluoride** acid

Table 14.4 Stepwise dissociation Constants for Several Common Polyprotic Acids

TABLE 14.4 Stepwise Dissociation Constants for Several Common Polyprotic Acids

Name	Formula	K_{a_1}	K_{a_2}	K_{a_3}
Phosphoric acid	H_3PO_4	7.5×10^{-3}	6.2×10^{-8}	4.8×10^{-13}
Arsenic acid	H_3AsO_4	5×10^{-3}	8×10^{-8}	6×10^{-10}
Carbonic acid	H_2CO_3	4.3×10^{-7}	5.6×10^{-11}	
Sulfuric acid	H_2SO_4	Large	1.2×10^{-2}	
Sulfurous acid	H_2SO_3	1.5×10^{-2}	1.0×10^{-7}	
Hydrosulfuric acid*	H_2S	1.0×10^{-7}	$\sim 10^{-19}$	
Oxalic acid	$H_2C_2O_4$	6.5×10^{-2}	6.1×10^{-5}	
Ascorbic acid (vitamin C)	$H_2C_6H_6O_6$	7.9×10^{-5}	1.6×10^{-12}	

*The K_{a_2} value for H_2S is very uncertain. Because it is so small, the K_{a_2} value is very difficult to measure accurately.

The pH Of a Polyprotic Acid

8 Calculate the pH of 5.0 M H_3PO_4 solution and the equilibrium concentrations of the species H_3PO_4 , H_2PO_4^- , HPO_4^{2-} , PO_4^{3-} .

Solution

The major species in solution are H_3PO_4 and H_2O ...The ICE table

ICE table

Initial (M)	5.0	0.00	0.00
-------------	-----	------	------

Change (M)	$-x$	$+x$	$+x$
------------	------	------	------

Equilibrium (M)	$5.0 - x$	x	x
-----------------	-----------	-----	-----

$$K_{a1} = \frac{x^2}{5.0 - x} = 7.5 \times 10^{-3} \quad K_b \ll 1 \quad 5.0 - x \approx 5.0$$

$$K_{a1} \approx \frac{x^2}{5.0} = 7.5 \times 10^{-3} \quad x = 1.9 \times 10^{-1} \quad [\text{H}^+] = 0.19 \text{ M}$$

$$[\text{H}^+] = [\text{H}_2\text{PO}_4^-] = 0.19 \text{ M} \quad [\text{H}_3\text{PO}_4] = 5.0 - x = 4.8 \text{ M}$$

The concentration of HPO_4^{2-}

$$K_{a2} = \frac{[\text{H}^+][\text{HPO}_4^{2-}]}{[\text{H}_2\text{PO}_4^-]} = 6.2 \times 10^{-8}$$

$$[\text{H}^+] = [\text{H}_2\text{PO}_4^-] = 0.19M$$

$$[\text{HPO}_4^{2-}] = K_{a2} = 6.2 \times 10^{-8}M$$

$$K_{a3} = \frac{[\text{H}^+][\text{PO}_4^{3-}]}{[\text{H}_2\text{PO}_4^-]} = 4.8 \times 10^{-13}$$

$$[\text{PO}_4^{3-}] = \frac{(4.8 \times 10^{-13})(6.2 \times 10^{-8})}{0.19} = 1.6 \times 10^{-19}M$$

The pH of Sulfuric Acid

- Calculate the pH of 0.1 M H_2SO_4 solution.

Ostwald Dilution law

- “For a dilute solution of a weak electrolyte, the degree of dissociation is **inversely proportional** to the square root of the molarity i.e. it is proportional to $\sqrt{1/M}$
- $$\alpha = \frac{\sqrt{K_a}}{C} \quad K_a = \alpha^2 C$$

α is degree of ionization

$$\alpha = \frac{\text{[amount dissociated]}}{\text{[initial conc]}} = \frac{[\text{H}^+]}{[\text{HA}]_0}$$

9

Calculate degree of ionization of 0.1M ethanoic acid

CH_3COOH , using Ostwald Dilution Law

$K_a = 1.8 \times 10^{-5} \text{ mol/dm}^3$ at 298K

Solution

$$K_a = \alpha^2 C$$

$$1.8 \times 10^{-5} = \alpha^2 \times 0.1$$

$$\alpha^2 = \frac{1.8 \times 10^{-5}}{0.1}$$

$$\alpha = 0.0134$$

Relation between α and pH

10 Calculate the pH of propanoic acid at 298 K given that the Concentration is 0.1M $K_a = 1.35 \times 10^{-5}$

$$\alpha = \frac{\sqrt{K_a}}{C} = \frac{\sqrt{1.35 \times 10^{-5}}}{0.1} = 0.0116$$

$$\text{Find } [H^+] = ? \quad \alpha = [H^+] / [HA]_0$$

$$[H^+] = \alpha \times [HA]_0 = 0.0116 \times 0.1 = 1.16 \times 10^{-3}$$

$$\text{pH} = -\log 1.16 \times 10^{-3} = 2.935$$