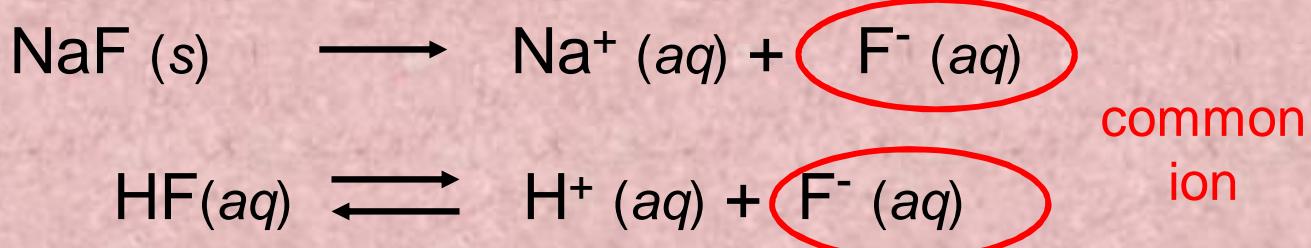
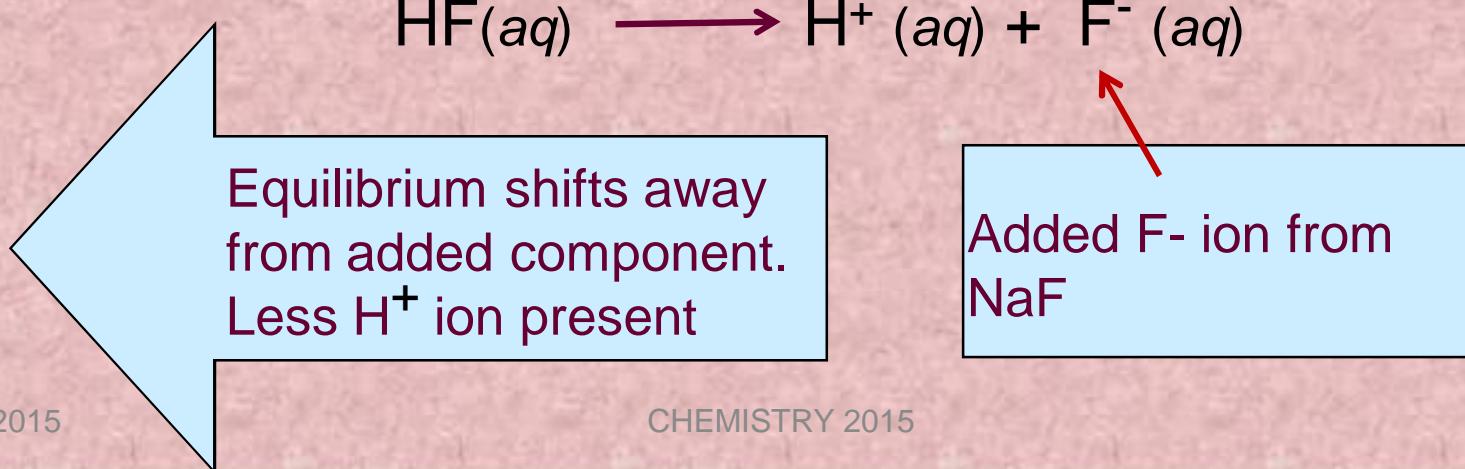


Acid-Base Equilibria

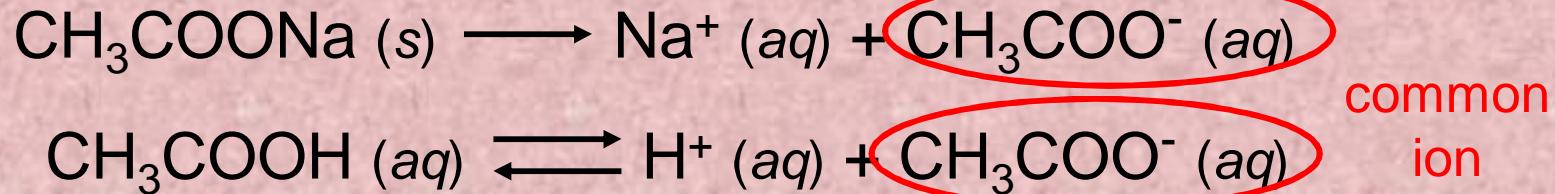

DR.S. ANAND GIRI

ANALYTICAL CHEMISTRY


Ph.D. Jadavpur University

Kolkata, India

- A weak acid solution HF + Salt of conjugate base NaF


- Major species HF, Na^+ , F^- and H_2O

The **common ion effect** is the shift in equilibrium caused by the addition of a compound **having an ion in common** with the dissolved substance.

The presence of a common ion **suppresses** the ionization of a weak acid or a weak base.

Consider mixture of CH_3COONa (strong electrolyte) and CH_3COOH (weak acid).

Example

15.1.a. The equilibrium concentration of H^+ in a solution containing only 1.0 M HF is 2.7×10^{-2} M and the percent dissociation is 2.7%.

b. Calculate $[\text{H}^+]$ and the percent dissociation in a solution containing 1.0 M HF ($K_a = 7.2 \times 10^{-4}$) and the 1.0 M NaF.

15.1.a. The equilibrium concentration of H^+ in a solution containing only 1.0 M HF is 2.7×10^{-2} M and the percent dissociation is 2.7%.

Solution part- a

Calculate the pH of a 1.0 M HF solution

$$K_a = \frac{[\text{H}^+][\text{F}^-]}{[\text{HF}]} = 7.2 \times 10^{-4}$$

Initial (M)	1.0	0.00	0.00
-------------	-----	------	------

Change (M)	$-x$	$+x$	$+x$
------------	------	------	------

Equilibrium (M)	$1.0 - x$	x	x
-----------------	-----------	-----	-----

$$K_a = \frac{x^2}{1.0 - x} = 7.2 \times 10^{-4} \quad \text{if } K_a \ll 1 \quad \text{then } 1.0 - x \approx 1.0$$

$$K_a \approx \frac{x^2}{1.0} = 7.2 \times 10^{-4} \quad \text{or } x^2 = 7.2 \times 10^{-4} \quad x = 2.7 \times 10^{-2} = 0.027 \text{ M}$$

$$x = [\text{H}^+] = [\text{F}^-] = 0.027 \text{ M} \quad \text{pH} = -\log [\text{H}^+] = 1.57$$

$$\% \text{ dissociation} = \frac{0.027 \text{ M}}{1.0 \text{ M}} \times 100\% = 2.7\%$$

b. Calculate $[H^+]$ and the percent dissociation in a solution containing 1.0 M HF ($K_a = 7.2 \times 10^{-4}$) and the 1.0 M NaF.

Solution part- b

the pH of a 1.0 M HF and the 1.0 M NaF. Solution.

$$K_a = \frac{[\text{H}^+][\text{F}^-]}{[\text{HF}]} = 7.2 \times 10^{-4}$$

Initial (M)	1.0	0.00	1.00 from HF
Change (M)	$-x$	$+x$	$+x$
Equilibrium (M)	$1.0 - x$	x	$1.0+x$

$$K_a = 7.2 \times 10^{-4} = \frac{x(1.0+x)}{1.0-x}$$

$$K_a \ll 1$$

$$1.0 - x \approx 1.0$$

$$K_a \approx \frac{(x) 1.0}{1.0} = 7.2 \times 10^{-4}$$

$$\text{or } x = 7.2 \times 10^{-4}$$

CH Compare previous $x = 0.027 \text{ M}$

b. Calculate $[H^+]$ and the percent dissociation in a solution containing 1.0 M HF($K_a = 7.2 \times 10^{-4}$) and the 1.0 M NaF.

Solution part- b...contd.....

$$[H^+] = x = 7.2 \times 10^{-4}$$

[H⁺] concentration decreases in buffer solutions

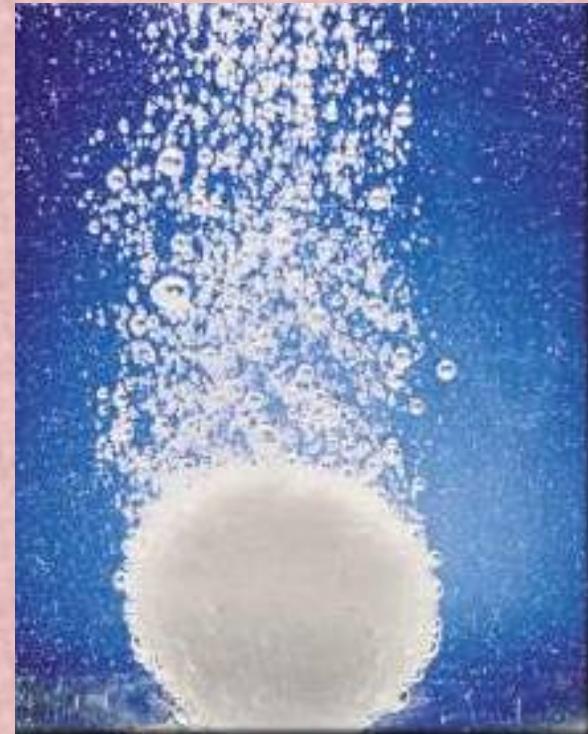
Compare previous $x = 2.7 \times 10^{-2} = 0.027 \text{ M}$

pH increases in buffer solutions

$$\text{pH} = -\log [H^+] = 3.14$$

Compare previous **pH = 1.57**

$$\% \text{ dissociation} = \frac{[H^+]}{[HF]} \times 100\% = \frac{7.2 \times 10^{-4} \text{ M}}{1.0 \text{ M}} \times 100\% = .072\%$$


Compare the previous per cent dissociation is **2.7%**.

per cent dissociation decreases in buffer solutions

A **buffer solution** is a solution of:

1. **A weak acid or a weak base and**
2. **The salt** of the weak acid or weak base

Both must be present!

A buffer solution has the **ability to resist changes** in pH upon the **addition of small amounts of either acid or base**.

Which of the following are buffer systems?

- (a) KF/HF
- (b) KBr/HBr,
- (c) $\text{Na}_2\text{CO}_3/\text{NaHCO}_3$

Which of the following are buffer systems?

- (a) KF/HF
- (b) KBr/HBr,
- (c) $\text{Na}_2\text{CO}_3/\text{NaHCO}_3$

(a) KF is a weak acid and F^- is its conjugate base
buffer solution

(b) HBr is a strong acid
not a buffer solution

(c) CO_3^{2-} is a weak base and HCO_3^- is its conjugate acid
buffer solution

A **buffer solution** is a solution of:

1. A **weak acid** or a **weak base** and
2. **The salt** of the weak acid or weak base

Both must be present!

A buffer solution has the **ability to resist changes** in pH upon the **addition of small amounts of either acid or base**.

Consider an equal molar mixture of CH_3COOH and CH_3COONa

Sample Exercise 15.2

A **buffered solution** contains 0.50 M acetic acid $K_a = 1.8 \times 10^{-5}$ and 0.50 M sodium acetate $\text{Na}_2\text{C}_2\text{H}_3\text{O}_2$. Calculate the **pH** of this solution.

Ex. 15.2. A buffered solution contains 0.50 M acetic acid $K_a = 1.8 \times 10^{-5}$ and 0.50 M sodium acetate $\text{Na}_2\text{C}_2\text{H}_3\text{O}_2$. Calculate the pH of this solution.

mixture of salt CH_3COONa [NaA] and weak acid CH_3COOH [HA].

$$K_a = \frac{[\text{H}^+][\text{A}^-]}{[\text{HA}]} \quad [\text{H}^+] = \frac{K_a[\text{HA}]}{[\text{A}^-]} = \frac{1.8 \times 10^{-5} [0.50] \text{ M}}{[0.50]} = 1.8 \times 10^{-5}$$

$[\text{H}^+] = 1.8 \times 10^{-5}$ and $\text{pH} = 4.74$

Now let us solve the same using

Henderson-Hasselbalch equation

$$\text{pH} = \text{p}K_a + \log \frac{[\text{conjugate base}]}{[\text{acid}]}$$

$$\text{pH} = \text{p}K_a + \log \frac{[\text{A}^-]}{[\text{HA}]} \quad \text{p}K_a = -\log K_a$$

$$\text{pH} = 4.74 + \log \frac{[0.50]}{[0.50]} = 4.74$$

Consider mixture of salt NaA and weak acid HA.

$$K_a = \frac{[\text{H}^+][\text{A}^-]}{[\text{HA}]}$$

$$[\text{H}^+] = K_a \frac{[\text{HA}]}{[\text{A}^-]}$$

Henderson-Hasselbalch equation

$$-\log [\text{H}^+] = -\log K_a - \log \frac{[\text{HA}]}{[\text{A}^-]}$$

$$\text{pH} = \text{p}K_a + \log \frac{[\text{conjugate base}]}{[\text{acid}]}$$

$$-\log [\text{H}^+] = -\log K_a + \log \frac{[\text{A}^-]}{[\text{HA}]}$$

$$\text{or pH} = \text{p}K_a + \log \frac{[\text{A}^-]}{[\text{HA}]}$$

$$\text{p}K_a = -\log K_a$$

Experiment -2

Buffers

Objective : To learn how to prepare a buffer solution and to learn how buffers resist change in pH

Introduction : the pH of a buffer can be calculated using:

Henderson-Hasselbalch equation

$$\text{pH} = \text{p}K_a + \log \frac{[\text{base}]}{[\text{acid}]} \dots \text{eqn.1}$$


On the other hand, if the pH is known and the K_a value of the acid is given, the ratio of the [base]/[acid] can be calculating by rearranging the eqn.1

$$\log \frac{[\text{base}]}{[\text{acid}]} = (\text{pH} - \text{p}K_a) \dots \text{eqn.2}$$

$$\frac{[\text{base}]}{[\text{acid}]} = \text{antilog} (\text{pH} - \text{p}K_a) \dots \text{eqn.3}$$

Ex.2. A buffered solution contains 0.10 M acetic acid $K_a = 1.8 \times 10^{-5}$ and 0.10 M sodium acetate $\text{Na}_2\text{C}_2\text{H}_3\text{O}_2$. Calculate the pH of this solution.

mixture of salt CH_3COONa [NaA] and weak acid CH_3COOH [HA].

$$[\text{H}^+] = 1.8 \times 10^{-5} \text{ and pH} = 4.74$$

Henderson-Hasselbalch equation

$$-\log [\text{H}^+] = -\log K_a - \log \frac{[\text{HA}]}{[\text{A}^-]}$$

$$-\log [\text{H}^+] = -\log K_a + \log \frac{[\text{A}^-]}{[\text{HA}]}$$

$$\text{pH} = \text{p}K_a + \log \frac{[\text{conjugate base}]}{[\text{acid}]}$$

$$\text{pH} = \text{p}K_a + \log \frac{[\text{A}^-]}{[\text{HA}]}$$

$$\text{p}K_a = -\log K_a$$

Calc for pH = 5 ???

$$\text{pH} = 4.74 + 0.26$$

$$\log [\text{A}^-]/[\text{HA}] = 0.26$$

$$[\text{A}^-]/[\text{HA}] = \text{antilog } 0.26$$

$$4/1/2015 = 1.82$$

$$\text{pH} = 4.74 + \log \frac{[0.10]}{[0.10]} = 4.74$$

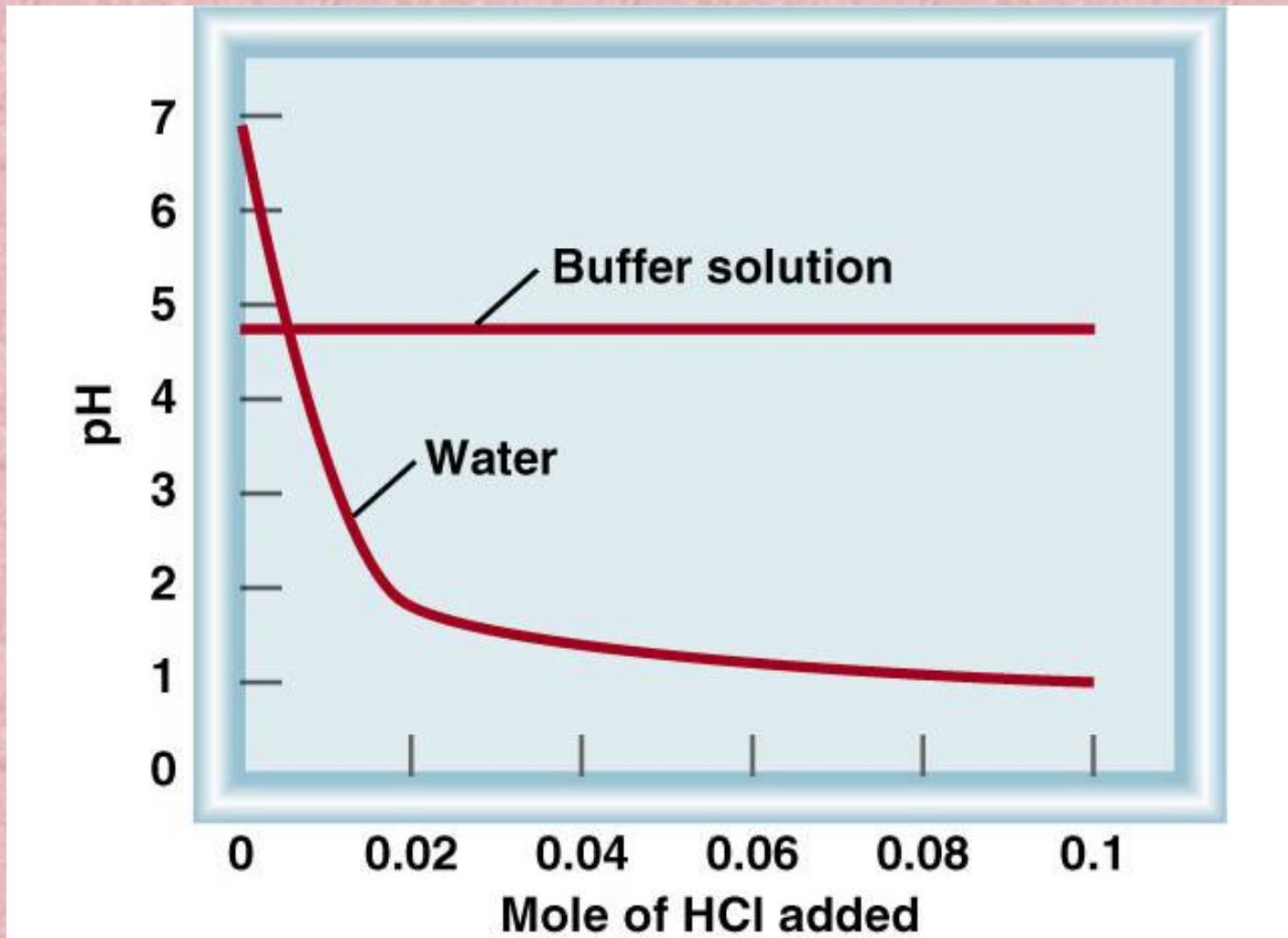
See sample exercise 15.4 p-689 & exercise 15.37 ; 15.38

A **buffer solution** is a solution of:

1. A weak acid or a weak base and
2. The salt of the weak acid or weak base

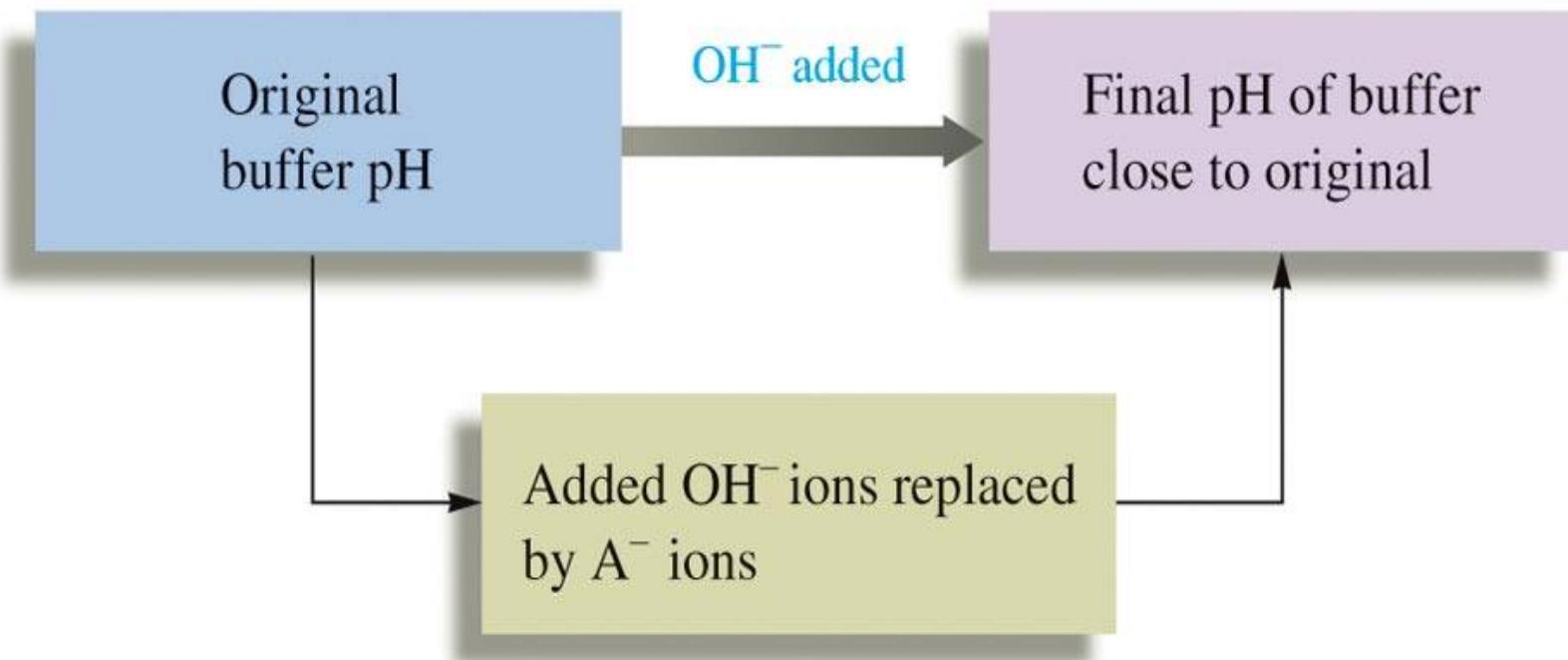
Both must be present!

A buffer solution has the **ability to resist changes** in pH upon the addition of small amounts of either acid or base.

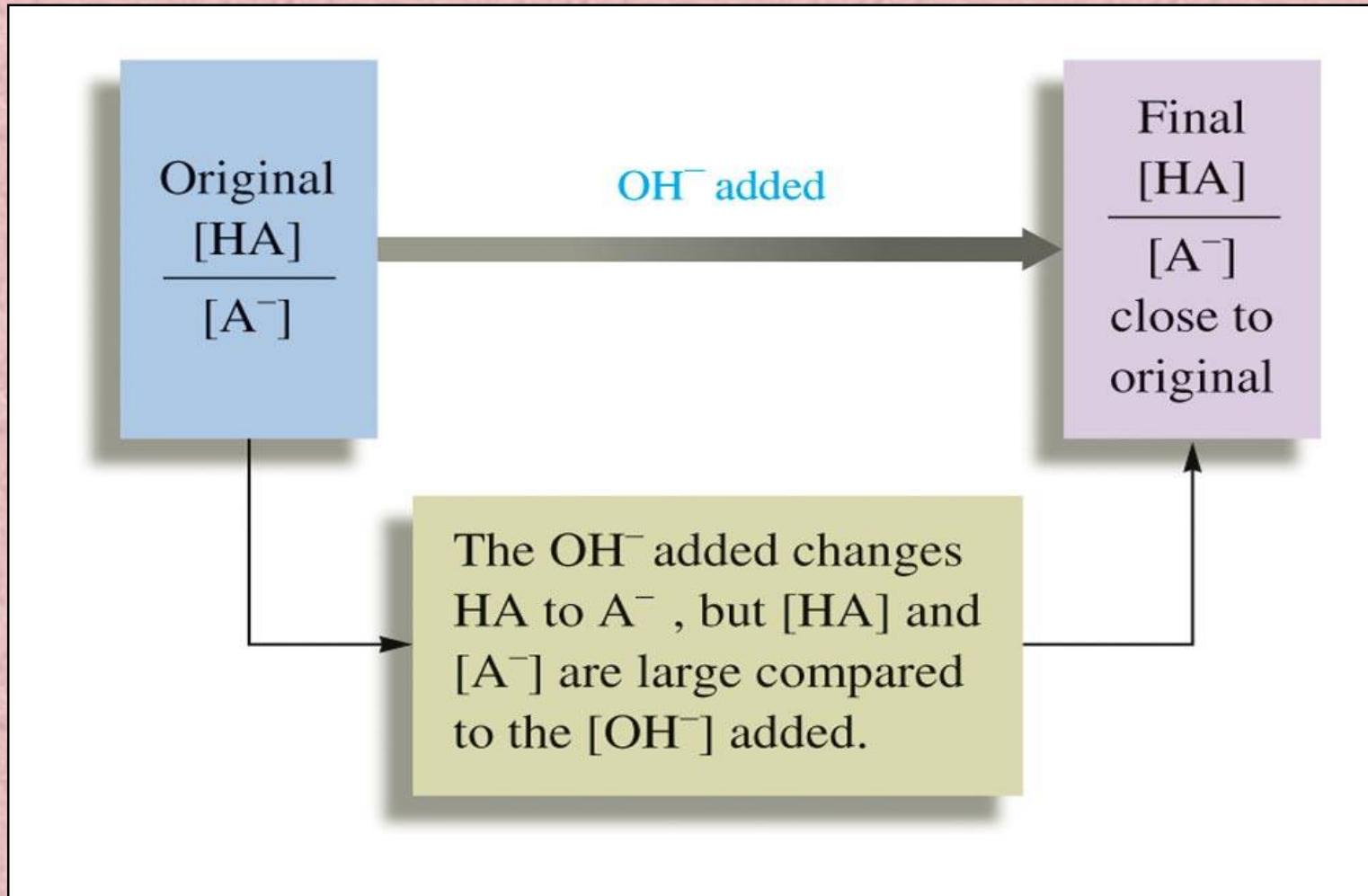

Consider an equal molar mixture of CH_3COOH and CH_3COONa

Add strong acid --- will **un-dissociate** some weak acid

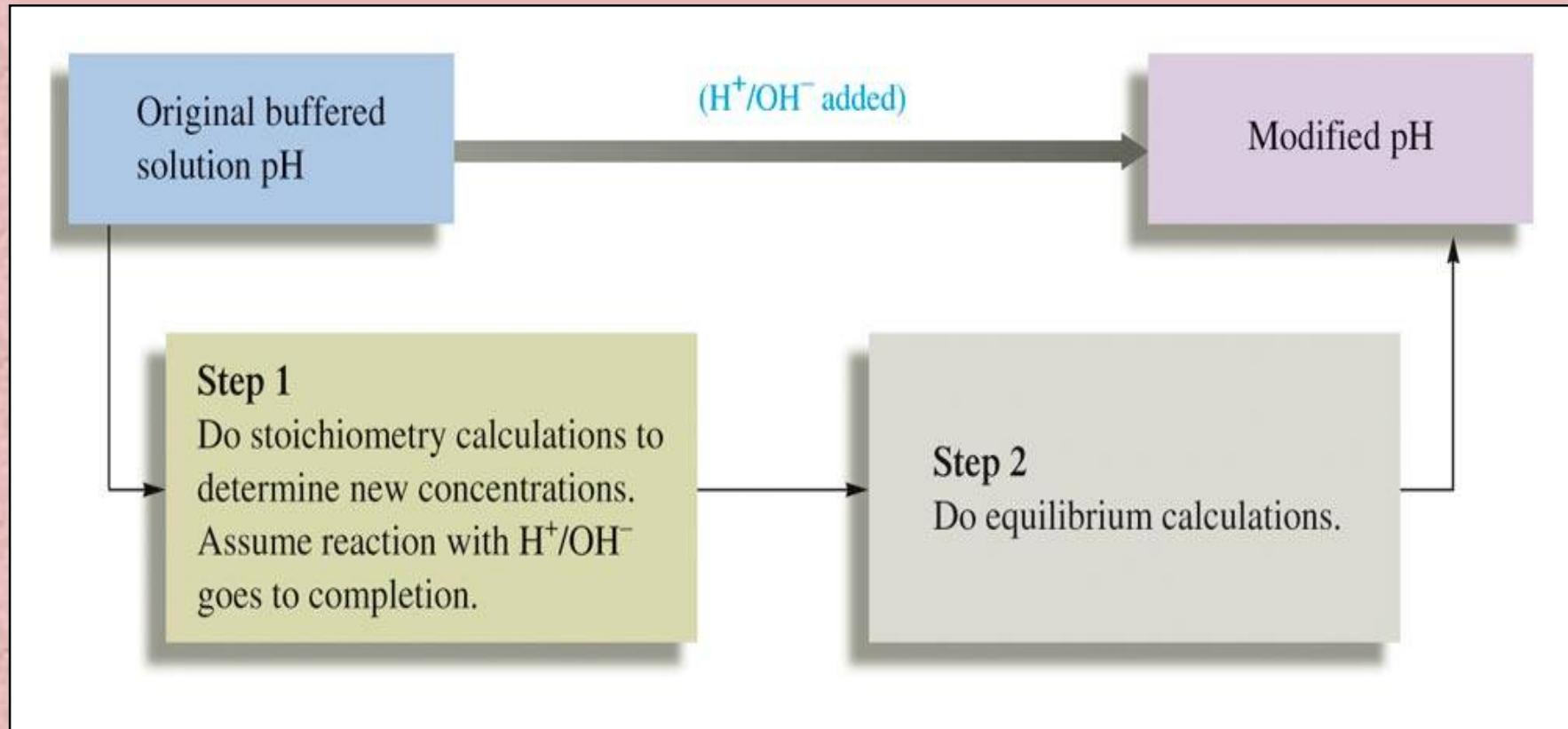
Add strong base --- will **dissociate** some weak acid



Add strong acid -- will **un-dissociate** some weak acid


How Buffering Works

Add strong base --- will dissociate some weak acid


Buffering Schematic

Add strong base --- will **dissociate** some weak acid

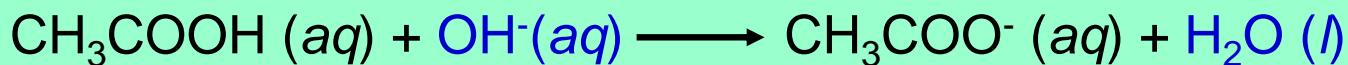
Strong Acid or Base Being Added to a Buffered Solution

Add strong acid will **un-dissociate** some weak acid

Ex.15.2. A buffered solution contains 0.50 M acetic acid $K_a = 1.8 \times 10^{-5}$ and 0.50 M sodium acetate $\text{Na}_2\text{C}_2\text{H}_3\text{O}_2$. Calculate the pH of this solution.

$$\text{pH} = 4.74 + \log \frac{[0.50]}{[0.50]} = 4.74$$

Sample Exercise 15.3. Calculate the change in pH that occurs when 0.010 mol solid NaOH is added to 1.0 L of the buffered solution. Compare this pH with that which occur when 0.010 mol is added to 1.0 L of water.


solution: The strong base NaOH will completely dissociate. Although acetic acid is a weak acid but OH^- is a such a strong base **that the reaction will proceed to completion** until all OH^- ions are consumed.

Sample Exercise 15.3 Calculate the change in pH that occurs when 0.010 mol solid NaOH is added to 1.0 L of the buffered solution. Compare this pH with that which occurs when 0.010 mol is added to 1.0 L of water.

solution:that the reaction will proceed to completion until all OH⁻ ions are consumed.

1) Stoichiometry Problem

Before	0.50 mol	0.010 mol	0.50 mol
Reaction			
After	0.50 - 0.010	0.010 - 0.010	0.50 + 0.010
reaction	= 0.49 mol	= 0 mol	0.51 mol

Note that 0.010 mol acetic acid has been converted to

CH₃COO[·] by the added OH[·] ions

Sample Exercise 15.3 Calculate the change in pH that occurs when 0.010 mol solid NaOH added to 1.0 L of the buffered solution. Compare this pH with that which occur when 0.010 mol is added to 1.0 L of water.

solution:that the reaction will proceed to completion until all OH^- ions are consumed.

2) Equilibrium Problem

The dominant equilibrium involves the dissociation of acetic acid

Initial 0.49 mol 0 mol 0.51 mol

Change -X + X +X

$$\text{Equilibrium} \quad 0.49-x \quad x \quad 0.51+x$$

$$\text{Then } K_a = 1.8 \times 10^{-5} = \frac{[H^+][CH_3COO^-]}{[CH_3COOH]} = \frac{(x)(0.51+x)}{(0.49-x)}$$

$$= \frac{(x)(0.51)}{(0.49)} \quad \boxed{x = 1.73 \times 10^{-5} \text{ and pH} = 4.76}$$

Sample Exercise 15.3 Calculate the change in pH that occurs when 0.010 mol solid NaOH added to 1.0 L of the buffered solution. Compare this pH with that which occur when 0.010 mol is added to 1.0 L of water.

solution:that the reaction will proceed to completion until all OH⁻ ions are consumed.

1) Stoichiometry Problem

2) Equilibrium Problem

Then

$$\begin{aligned} K_a &= 1.8 \times 10^{-5} = \frac{[\text{H}^{\text{+}}][\text{CH}_3\text{COO}^{\text{-}}]}{[\text{CH}_3\text{COOH}]} = \frac{(x)(0.51+x)}{(0.49-x)} \\ &= \frac{(x)(0.51)}{(0.49)} \text{ or } x = 1.73 \times 10^{-5} \text{ and pH} = 4.76 \end{aligned}$$

**The change in pH by addition of 0.01 M NaOH
in the buffered solution is then**

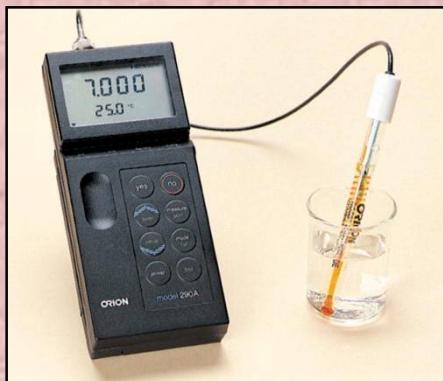
$$4.76 - 4.74 = + 0.02$$

Pure Water at pH 7.000. (bottom) When .01 mol NaOH is Added to 1.0L of Pure Water, the pH Jumps to 12.000

Sample Exercise 15.3 Calculate the change in pH that occurs when 0.010 mol solid NaOH added to 1.0 L of the buffered solution. Compare this pH with that which occur when 0.010 mol is added to 1.0 L of water.

.....The change in pH by addition of 0.01 M NaOH in the buffered solution is then **$4.76 - 4.74 = + 0.02$**

Pure Water at pH 7.000. (bottom) When .01 mol NaOH is Added to 1.0L of Pure Water, the pH Jumps to 12.000


$$[\text{H}^+] = \frac{K_w}{[\text{OH}^-]} = \frac{1.0 \times 10^{-14}}{1.0 \times 10^{-2}} = 1.0 \times 10^{-12}$$

pH = 12.00

Thus the change in pH is

$$12 - 7.00 = + 5.00$$

new solution **Pure water**

Consider mixture of salt NaA and weak acid HA.

$$K_a = \frac{[\text{H}^+][\text{A}^-]}{[\text{HA}]}$$

$$[\text{H}^+] = K_a \frac{[\text{HA}]}{[\text{A}^-]}$$

Henderson-Hasselbalch equation

$$-\log [\text{H}^+] = -\log K_a - \log \frac{[\text{HA}]}{[\text{A}^-]}$$

$$\text{pH} = \text{p}K_a + \log \frac{[\text{conjugate base}]}{[\text{acid}]}$$

$$-\log [\text{H}^+] = -\log K_a + \log \frac{[\text{A}^-]}{[\text{HA}]}$$

$$\text{or pH} = \text{p}K_a + \log \frac{[\text{A}^-]}{[\text{HA}]}$$

$$\text{p}K_a = -\log K_a$$

What is the pH of a solution containing 0.30 M HCOOH and 0.52 M HCOOK?
HCOOH $pK_a = 3.77$

Mixture of weak acid and conjugate base!

Initial (M)	0.30	0.00	0.52
Change (M)	$-x$	$+x$	$+x$
Equilibrium (M)	$0.30 - x$	x	$0.52 + x$

Common ion effect

$$0.30 - x \approx 0.30$$

$$\text{pH} = \text{p}K_a + \log \frac{[\text{HCOO}^-]}{[\text{HCOOH}]}$$
 HCOOH $pK_a = 3.77$

$$0.52 + x \approx 0.52$$

$$\text{pH} = 3.77 + \log \frac{[0.52]}{[0.30]} = 4.01$$

Calculate the pH of the 0.30 M $\text{NH}_3/0.36\text{ M}$ NH_4Cl buffer system. What is the pH after the addition of 20.0 mL of 0.050 M NaOH to 80.0 mL of the buffer solution?

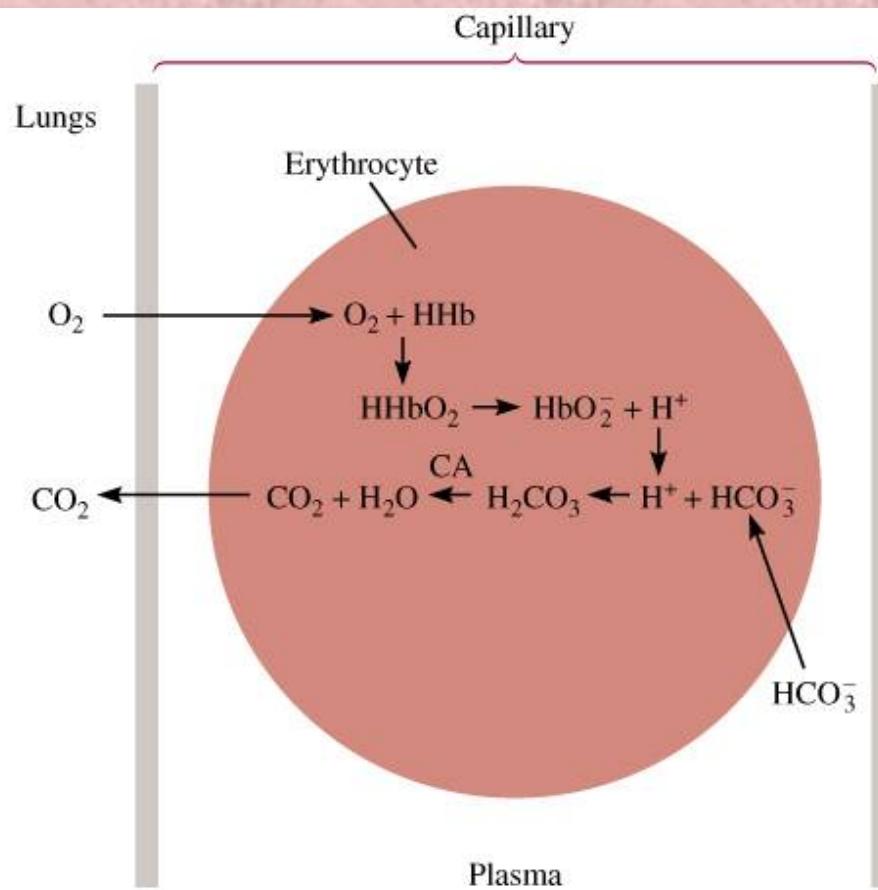
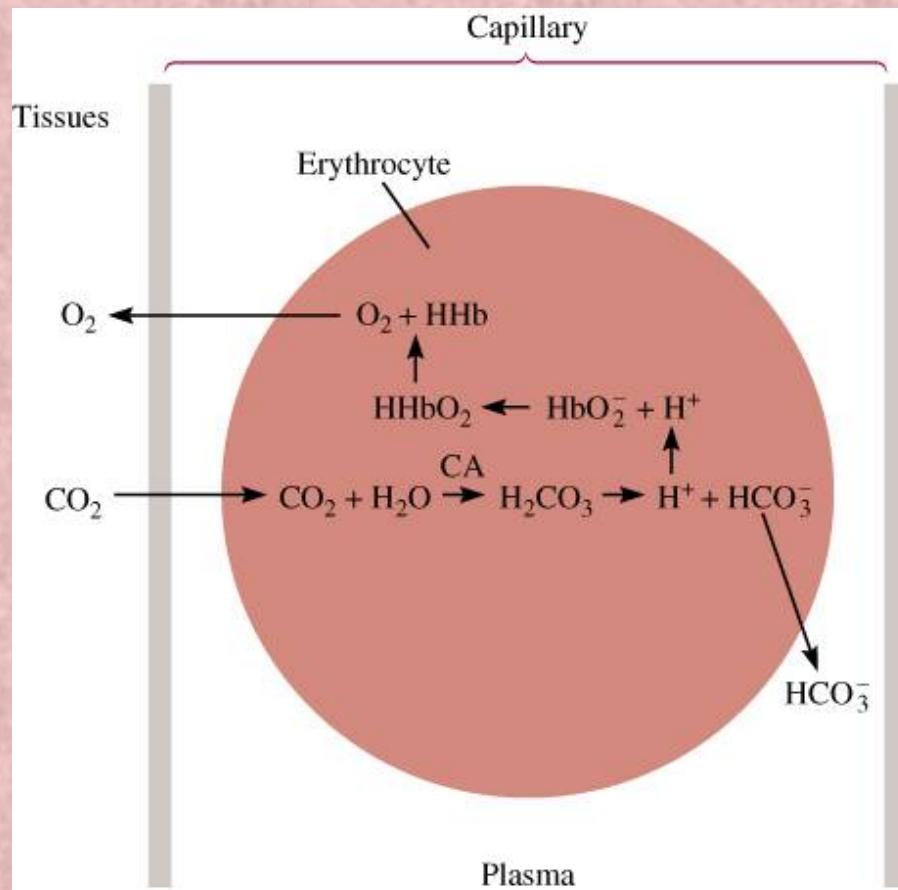
$$\text{pH} = \text{p}K_a + \log \frac{[\text{NH}_3]}{[\text{NH}_4^+]}$$

$$\text{p}K_a = 9.25$$

$$\text{pH} = 9.25 + \log \frac{[0.30]}{[0.36]} = 9.17$$

start (moles)	0.029	0.001	0.024
---------------	-------	-------	-------

end (moles)	0.028	0.0	0.025
-------------	-------	-----	-------



$$\text{final volume} = 80.0\text{ mL} + 20.0\text{ mL} = 100\text{ mL}$$

$$[\text{NH}_4^+] = \frac{0.028}{0.10}$$

$$[\text{NH}_3] = \frac{0.025}{0.10}$$

$$\text{pH} = 9.25 + \log \frac{[0.25]}{[0.28]} = 9.20$$

Chemistry In Action: Maintaining the pH of Blood

